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Abstract Multiobjective genetic fuzzy rule selection is

based on the generation of a set of candidate fuzzy clas-

sification rules using a preestablished granularity or mul-

tiple fuzzy partitions with different granularities for each

attribute. Then, a multiobjective evolutionary algorithm is

applied to perform fuzzy rule selection. Since using mul-

tiple granularities for the same attribute has been some-

times pointed out as to involve a potential interpretability

loss, a mechanism to specify appropriate single granulari-

ties at the rule extraction stage has been proposed to avoid

it but maintaining or even improving the classification

performance. In this work, we perform a statistical study on

this proposal and we extend it by combining the single

granularity-based approach with a lateral tuning of the

membership functions, i.e., complete contexts learning. In

this way, we analyze in depth the importance of

determining the appropriate contexts for learning fuzzy

classifiers. To this end, we will compare the single gran-

ularity-based approach with the use of multiple granulari-

ties with and without tuning. The results show that the

performance of the obtained classifiers can be even

improved by obtaining the appropriate variable contexts,

i.e., appropriate granularities and membership function

parameters.

Keywords Fuzzy rule-based classifiers � Multiobjective

evolutionary algorithms � Granularity learning � Lateral

tuning of membership functions

1 Introduction

Many automatic techniques have been proposed in the

literature to extract a proper set of fuzzy rules from

numerical data. Most of these techniques usually try to

improve the performance associated with the prediction

error without paying a special attention to the system

interpretability, an essential aspect of fuzzy rule-based

systems. In the last years, the problem of finding the right

interpretability–accuracy tradeoff, despite the original

nature of fuzzy logic, has given rise to a growing interest in

methods that take both aspects into account (Casillas et al.

2003). Of course, the ideal thing would be to satisfy both

criteria to a high degree but since they are contradictory

issues, generally it is not possible.

Evolutionary multiobjective optimization (EMO) algo-

rithms (Coello et al. 2002; Deb 2001) generate a family of

equally valid solutions, where each solution tends to satisfy

a criterion to a higher extent than another. For this reason,

EMO algorithms have been also applied to improve the

accuracy–interpretability tradeoff of fuzzy rule-based sys-

tems (Alcalá et al. 2007b, 2009a; Botta et al. 2009;

Cococcioni et al. 2007; Gacto et al. 2009, 2010; Ishibuchi

et al. 1995, 1997; Ishibuchi and Nojima 2007; Ishibuchi

and Yamamoto 2004; Pulkkinen and Koivisto 2008, 2010;

Sánchez et al. 2009), where each solution in the Pareto
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front represents a different tradeoff between interpretability

and accuracy (typically measured as complexity and pre-

diction error). The application of EMO algorithms to fuzzy

rule-based systems is often referred to as multiobjective

genetic fuzzy systems.

Some of the most recognized works (Ishibuchi et al.

1995, 1997) were devoted to the application of EMO

algorithms to perform a genetic fuzzy rule selection on an

initial set of classification rules involving ‘‘don’t care’’

conditions and considering two different objectives, clas-

sification accuracy and the number of rules. Then, a third

objective was also included in order to minimize the length

of the rules in Ishibuchi and Yamamoto (2004). In genetic

fuzzy rule selection, a previously fixed granularity

(Ishibuchi et al. 1995, 1997) or multiple granularities

(Ishibuchi and Yamamoto 2004; Nojima et al. 2009) of

triangular fuzzy membership functions have been used for

the same attribute in the design of fuzzy classifiers, even

regression models (Alcalá et al. 2003), since an appropriate

granularity for each attribute is not known beforehand. By

using multiple granularities, the number of fuzzy rules can

be successfully reduced in a model.

Although using multiple granularities for the same attri-

bute is one of the most promising approaches, its interpret-

ability loss has often been pointed out. To solve this problem,

we have proposed in Alcalá et al. (2009b) a single granu-

larity specification approach for multiobjective genetic

fuzzy rule selection. Multiobjective genetic fuzzy rule

selection is a two-step method. In the first phase, a pre-

specified number of promising fuzzy rules are generated by a

heuristic procedure. In the second phase, a multiobjective

genetic algorithm is used to select a small number of fuzzy

rules from the extracted ones in the first phase. A single

granularity specification is an additional process before the

second phase. After extracting a prespecified number of

fuzzy rules with multiple granularities, a single granularity is

specified for each attribute individually according to the

frequency of employed partitions and the importance of the

multiple granularity-based extracted rules. Then, a pre-

specified number of fuzzy rules are extracted again based on

the specified granularity for each attribute. Following the

same main idea, four different mechanisms were proposed

and compared in Alcalá et al. (2009b).

In this work, we perform a statistical study focused on

the best mechanism presented in Alcalá et al. (2009b), and

we extend it by combining the single granularity-based

approach with a lateral tuning of the membership functions,

i.e., complete contexts learning. This is based on the lin-

guistic 2-tuple representation model (Alcalá et al. 2007a;

Herrera and Martı́nez 2000). The linguistic 2-tuple repre-

sentation allows the lateral translation of a membership

function by only considering one parameter (Alcalá et al.

2007a), and it represents an effective way to manage the

size of the search space when both rule selection and tuning

are combined. In this way, we can analyze in depth the

importance of determining the appropriate contexts for

learning fuzzy classifiers, which is the main aim of this

paper.

To this end, we have compared the single granularity-

based approach with the use of multiple granularities with

and without tuning. We have tested the different approa-

ches (with–without multiple granularities and with–without

tuning) on 24 real-world problems. To assess the results

obtained by the different algorithms, we have applied a

non-parametric statistical test (Demšar 2006; Garcı́a et al.

2008, 2009; Garcı́a and Herrera 2008) for pair-wise com-

parisons, considering the means of the most accurate points

of the Pareto fronts obtained from each algorithm. As well

as the interpretability improvement that the use of a single

granularity involves, the results show that the performance

of the obtained classifiers can be even improved by

obtaining the appropriate variable contexts, i.e., appropri-

ate granularities and membership function parameters.

This contribution is arranged as follows. The next sec-

tion introduces fuzzy rule-based classifiers by describing

the rule structure and inference used in this paper. Section 3

presents the algorithm to generate single granularity-based

fuzzy classification rules for multiobjective genetic fuzzy

rule selection. Section 4 shows the experimental study on

the best mechanism for this method. In Sect. 5, we propose

the combination of the single granularity-based approach

with the lateral tuning of membership functions in order to

completely specify the variable contexts. Section 6 presents

the experiments in combination with the lateral tuning.

Section 7 points out some conclusions. Finally, Appendix

describes the Wilcoxon signed-rank test for pair-wise

comparisons.

2 Preliminaries: fuzzy rule-based classifiers structure

and inference

Let us assume that we have m training (i.e., labeled) pat-

terns xp ¼ ðxp1; . . .; xpnÞ; p ¼ 1; 2; . . .;m from M classes in

an n-dimensional pattern space where xpi is the attribute

value of the pth pattern for the ith attribute (i ¼ 1; . . .; n).

For the simplicity of explanation, we assume that all the

attribute values have already been normalized into real

numbers in the unit interval [0, 1]. Thus, the pattern space

of our classification problem is an n-dimensional unit-

hypercube ½0; 1�n:
For our n-dimensional pattern classification problem, we

use fuzzy rules of the following type:

Rq : If x1 is Aq1 and . . . and xn is Aqn

then Class Cq with CFq;
ð1Þ
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where Rq is the label of the qth fuzzy rule, x ¼ ðx1; . . .; xnÞ
is an n-dimensional pattern vector, Aqi is an antecedent

fuzzy set (i ¼ 1; . . .; n), Cq is a class label, and CFq is a

rule weight. We denote the antecedent fuzzy sets of Rq as a

fuzzy vector Aq ¼ ðAq1;Aq2; . . .;AqnÞ:
Fourteen fuzzy sets are initially considered in four fuzzy

partitions with different granularities. Figure 1 depicts

these partitions. In addition to those 14 fuzzy sets, we also

use the domain interval [0, 1] itself as an antecedent fuzzy

set in order to represent a don’t care condition.

Let S be a set of fuzzy rules of the form in Eq. 1. When

an input pattern xp is to be classified by S, first we calculate

the compatibility grade of xp with the antecedent part Aq ¼
ðAq1;Aq2; . . .;AqnÞ of each fuzzy rule Rq in S using the

product operation as,

lAq
ðxpÞ ¼ lAq1

ðxp1Þ � . . . � lAqn
ðxpnÞ; ð2Þ

where lAqi
ð�Þ is the membership function of the antecedent

fuzzy set Aqi: Then, a single winner rule Rw is identified

using the compatibility grade and the rule weight of each

fuzzy rule as

lAw
ðxpÞ � CFw ¼ maxflAq

ðxpÞ � CFqjRq 2 Sg: ð3Þ

The input pattern xp is classified as the consequent class

Cw of the winner rule Rw: When multiple fuzzy rules with

different consequent classes have the same maximum value

in Eq. 3, the classification of xp is rejected. If there is no

compatible fuzzy rule with xp; its classification is also

rejected.

Finally, we should emphasize that the use of a rule

weight or certainty grade can be interpreted as modifying

the membership function of each antecedent fuzzy set as

shown in Ishibuchi et al. (2000). Whereas it introduces a

dimension of complexity to fuzzy if–then rules, it is widely

used for fuzzy classification as it just affects the strength of

each fuzzy if–then rule in the classification phase which

does not change the position of the antecedent fuzzy sets

(preserving the meaning of each linguistic value while the

modified antecedent fuzzy set is not normal anymore).

3 An algorithm for generating single granularity-based

fuzzy classification rules

As we have already explained, multiobjective genetic

fuzzy rule selection has been based on a previously fixed

granularity (Ishibuchi et al. 1995, 1997) (five linguistic

terms in all the attributes) or multiple granularities

(Ishibuchi and Yamamoto 2004; Nojima et al. 2009).

Based on this last approach (Ishibuchi and Yamamoto

2004), we describe in this section the mechanism that we

proposed in Alcalá et al. (2009b) to generate single gran-

ularity-based fuzzy classification rules, which represents an

approach closer to the interpretability. The proposed pro-

cedure is as follows:

Step 1 Rule extraction with multiple granularities.

Step 2 Specification of single granularity for each

attribute based on the extracted rules.

Step 3 Rule extraction with selected single granularities.

Step 4 Multiobjective genetic fuzzy rule selection.

The original multiple granularities-based procedure

(Ishibuchi and Yamamoto 2004) is composed of Steps 1 and

4. Steps 2 and 3 are additional procedures. In Step 1, we

extract a fixed small number of rules for each class based on

well-known data mining rule evaluation measures (Agrawal

et al. 1996) and multiple granularities. In Step 2, we select a

single granularity for each attribute based on the extracted

rules. Then, we extract the final set of candidate rules for each

class by using the selected single granularities in Step 3. Step

4 is the same as the original one to perform multiobjective

genetic fuzzy rule selection. The next subsections present

detailed explanations of these steps.

3.1 Rule extraction with multiple granularities (Step 1)

Since 14 antecedent fuzzy sets in Fig. 1 and an additional

don’t care fuzzy set [0, 1] are used for each attribute of the

n-dimensional classification problem, the total number of

possible fuzzy rules is 15n: Among these possible rules, we

examine only short fuzzy rules with a small number of

antecedent conditions (i.e., short fuzzy rules with many

don’t care conditions) to generate an initial set of candidate

rules. In this work, we specify the maximum number of

antecedent conditions as three for datasets with less than 30

attributes and two for datasets with more than or equal to

30 attributes.

The consequent class Cq and the rule weight CFq of

each fuzzy rule Rq are specified from training patterns

compatible with its antecedent part Aq ¼ ðAq1;Aq2; . . .;

AqnÞ in the following heuristic manner (Ishibuchi et al.

2004). First, the confidence of each class for the antecedent

part Aq is calculated as:Fig. 1 The fourteen antecedent fuzzy sets considered
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cðAq ) Class hÞ ¼
P

xp2Class h lAq
ðxpÞ

Pm
p¼1 lAq

ðxpÞ
; h ¼ 1; . . .;M:

ð4Þ

It should be noted that ‘‘Aq ) Class h’’ means the fuzzy

rule with the antecedent part Aq and the consequent class

h. Then, the consequent class Cq is specified by identifying

the class with the maximum confidence:

cðAq ) Class CqÞ ¼ max
h¼1;2;...;M

fcðAq ) Class hÞg: ð5Þ

In this manner, we generate the fuzzy rule Rq (i.e.,

Aq ) Class Cq) with the antecedent part Aq and the con-

sequent class Cq: We do not generate any fuzzy rules with

the antecedent part Aq, if there is no compatible training

pattern with Aq:

The rule weight CFq of each fuzzy rule Rq has a large

effect on the performance of fuzzy rule-based classifiers.

We use the following specification of CFq; because good

results were reported in the literature Ishibuchi and

Yamamoto (2005):

CFq ¼ cðAq ) Class CqÞ �
XM

h¼1
h 6¼Cq

cðAq ) Class hÞ: ð6Þ

We do not use the fuzzy rule Rq as a candidate rule, if the

rule weight CFq is not positive (i.e., if its confidence is not

larger than 0.5).

In the above-mentioned heuristic manner, we can gen-

erate a large number of short fuzzy rules as candidate rules

in multiobjective fuzzy rule selection (some of them with

not interesting properties). In order to directly focus on the

most interesting rules, a prescreening procedure is applied

to decrease the number of candidate rules. Among short

fuzzy rules satisfying these two threshold values, we

choose a prespecified number of candidate rules for each

class. As a rule evaluation criterion, we use the product of

the support sðRqÞ; which indicates the percentage of pat-

terns covered by Rq; and the confidence cðRqÞ: That is, we

choose a prespecified number of the best candidate rules

for each class with respect to the product pðRqÞ ¼
sðRqÞ � cðRqÞ:

3.2 Single granularity specification and rule extraction

(Steps 2 and 3)

Once a set of candidate rules is obtained based on multiple

granularities (Step 1), the original approach (Ishibuchi and

Yamamoto 2004) goes to Step 4 in order to apply multi-

objective fuzzy rule selection. However, there is useful

information in the extracted rules that could be used to

specify an appropriate single granularity for each attribute.

The frequency of the employed granularities in the

extracted rules (weighted by the corresponding rule

importance) has been used in Alcalá et al. (2009b) to fix

the most promising granularities. For each attribute

i (i ¼ 1; . . .; n), we can specify the granularity with the

highest sum of importance of the rules considering such

granularity in the corresponding attribute:

GrðiÞ ¼ argmax
g¼2;...;5

X

GranðAqiÞ¼g

ImpðRqÞ

8
<

:

9
=

;
; ð7Þ

where GranðAqiÞ is the granularity of the partition con-

taining the fuzzy set used in attribute i of rule Rq and

ImpðRqÞ is a criterion associated to the importance of the

rule in the sum. Many criteria can be considered involving

different specification mechanisms:

• Frequency: ImpðRqÞ ¼ 1; 8q:
• Confidence: ImpðRqÞ ¼ cðRqÞ; 8q:
• Weight: ImpðRqÞ ¼ CFq; 8q:
• Support: ImpðRqÞ ¼ sðRqÞ; 8q:
• Product: ImpðRqÞ ¼ pðRqÞ; 8q:

However, the first three criteria are not recommended

since they usually provoke overfitting. The last two criteria

were studied in Alcalá et al. (2009b) as a way to extract

more general rules instead of very specific ones, which

helps to the generalization ability. In the same way, in

order to preferably take into account more general rules,

two approaches named 1-ALL approach and 1-2-3

approach, were examined in Alcalá et al. (2009b) with the

two basic criteria (i.e., product and support). Both

approaches give priority to granularities in the rules with a

single condition, i.e., Eq. 7 is applied by only considering

size one rules, if possible. The difference is only when

there is no rule with a single condition in the corresponding

attribute. Let us consider the product criterion and the next

six rules, where gi represents any fuzzy set of a partition

with granularity i,

R1 : If x1 is g2 and x2 is g4 and x3 is g3 then Class 1,

pðR1Þ : 0:4:

R2 : If x1 is g4 then Class 2; pðR2Þ : 0:8:

R3 : If x2 is g3 then Class 2, pðR3Þ : 0:3:

R4 : If x2 is g2 then Class 1, pðR4Þ : 0:8:

R5 : If x2 is g3 and x3 is g4 then Class 1, pðR5Þ : 0:6:

R6 : If x1 is g2 and x2 is g2 and x3 is g3 then Class 1,

pðR6Þ : 0:3:

When we specify a granularity for the first attribute, we

first check rule(s) with a single condition related to the first

attribute by both approaches (1-ALL and 1-2-3). Since rule

R2 is the only rule in this situation, we select granularity 4

for the first attribute. Next, in the same manner, we can find

2306 R. Alcalá et al.
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two rules: R3 and R4 for the second attribute. We select

granularity 2 for the second attribute because of the high

product value obtained by both approaches. Finally, we

select a granularity for the third attribute, but there is no

rule with a single condition. In 1-ALL approach, we

specify a single granularity from all the rules including the

third attribute independently of the number of conditions

they have (rules R1; R5 and R6). The sum of product values

for granularity 3 is 0.7 and 0.6 for granularity 4. From this

comparison, we select granularity 3 for the third attribute.

On the other hand, in 1–2–3 approach, we give priority to

the rules with a smaller number of conditions (two condi-

tions). That is, we select granularity 4 for the third attribute

(if there are no rules with two conditions, then those with

three are considered).

In Step 2, we can select a single granularity for each

attribute in this way. Once single granularities are fixed, in

Step 3, we have to apply again the candidate rule extraction

procedure explained in Step 1 by only using the specified

single granularities for each attribute.

Four different mechanisms have been defined: Support/

1-ALL, Product/1-ALL, Support/1–2–3 and Product/1–2–3.

However, we will focus on Product/1-ALL from now on,

since this approach reported the best results in Alcalá et al.

(2009b).

3.3 Multiobjective fuzzy rule selection (Step 4)

Let us assume that we have N candidate rules (i.e., N=M

candidate rules for each of M classes). Any subset S of the

N candidate rules can be represented by a binary string of

length N:

S ¼ s1s2. . .sN ;

where sj ¼ 1 and sj ¼ 0 mean the inclusion and the

exclusion of the jth candidate rule Rj in the subset S,

respectively ðj ¼ 1; . . .;NÞ: Such a binary string S is used

as an individual in an EMO algorithm for multiobjective

fuzzy rule selection.

It should be noted that S can be viewed as a fuzzy rule-

based classifier. Each fuzzy rule-based classifier S is

evaluated by the next three objectives:

f1ðSÞ : the number of correctly classified training

patterns.

f2ðSÞ : the number of selected fuzzy rules.

f3ðSÞ : the total number of antecedent conditions.

That is, our multiobjective fuzzy rule selection problem

is written as:

Maximize f1ðSÞ; and minimize f2ðSÞ and f3ðSÞ: ð8Þ

We use NSGA-II of Deb et al. (2002) to search for non-

dominated fuzzy rule-based classifiers with respect to these

three objectives. Uniform crossover and bit-flip mutation

are used as genetic operations. The execution of NSGA-II

was terminated at the prespecified number of generations.

In order to efficiently decrease the number of fuzzy rules

in each rule set S, two heuristic techniques are used. One is

biased mutation, where a larger mutation probability is

assigned to the mutation from 1 to 0 than that from 0 to 1.

The other is the removal of unnecessary fuzzy rules. Since

we use the single winner-based scheme in Eq. 3 for clas-

sifying each training pattern by a fuzzy rule-based classifier

S, some fuzzy rules in S may classify no training patterns.

We can remove those unnecessary fuzzy rules from

S without changing any classification results by S [i.e.,

without changing the first objective f1ðSÞ]. This heuristic

procedure can be viewed as a kind of local search since

f2ðSÞ and f3ðSÞ are improved without deteriorating f1ðSÞ:

4 Experiments on the learning of single granularities

In order to statistically examine the effects of the best

granularity specification mechanism, Product/1-ALL, we

have extended the experimental framework in Alcalá et al.

(2007a) by considering up to 24 datasets selected from the

UCI repository (Asuncion and Newman 2007). Since the

algorithm has been not designed to consider nominal data

(which is not the aim of the paper), we have only consid-

ered those available datasets with only continuous attri-

butes in order to avoid wrong conclusions. On the other

hand, in the case of presenting missing values (Bands,

Cleveland, Dermatology, Hepatitis, Mammographic and

Wisconsin), we have removed the instances with any

missing value before partitioning. Table 1 summarizes the

main properties of these datasets. It shows, for each dataset,

the number of patterns, the number of attributes and the

number of classes.

In order to analyze the performance of the single gran-

ularity specification, we compare the original approach (All

Granularities) with the mechanism proposed to specify

single granularities (Product/1-ALL). The parameter set-

tings for both approaches are as follows (same conditions

in all the cases):

• The number of fuzzy rules for each class: 300

• Optimizer: NSGA-II

• Population size: 200

• The number of generations: 5,000

• Crossover probability: 0.9 (uniform crossover)

• Mutation probability: 0.05 (from 1 to 0), 1=Lth (from 0

to 1, where Lth is the string length).

We consider a tenfold cross-validation model, i.e., ten

random partitions of data each with 10%, and a combina-

tion of nine of them (90%) as training and the remaining

Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules 2307
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one as test.1 For each one of the ten data partitions, the

studied methods have been run three times, showing for

each problem the averaged results of a total of 30 runs

(10fcv x 3 different random seeds). Since these methods

present a multiobjective nature, the averaged values are

calculated considering the most accurate solution from

each Pareto front obtained (the one with the highest clas-

sification rate in training). Our main aim following this

approach is to obtain more reliable information at least in

this part of the Pareto front, which in any case is comprised

by quite simple models.

In order to assess whether significant differences exist

among the results, we adopt statistical analysis (Demšar

2006; Garcı́a et al. 2008, 2009, Garcı́a and Herrera 2008)

and in particular non-parametric tests, according to the

recommendations made in Demšar (206) and Garcı́a and

Herrera 2008), where a set of simple, safe and robust non-

parametric tests for statistical comparisons of classifiers

has been analyzed. For a deep explanation on the use of

non-parametric tests for data mining and computational

intelligence, see the website at http://sci2s.ugr.es/sicidm/.

In our study, we will employ Wilcoxon’s signed-rank

test (Sheskin 2003, Wilcoxon 1945) for pair-wise com-

parison. Wilcoxon’s test is based on computing the dif-

ferences between two sample means (typically, mean test

errors obtained by a pair of different algorithms on dif-

ferent datasets). A detailed description of this test is pre-

sented in Appendix. To perform the tests, we use a level of

confidence a ¼ 0:1:

Table 2 shows the averaged number of rules/conditions

(#R/#C) and classification percentages in training (Tr.) and

test (Ts.) of the most accurate classifier from each of the

obtained Pareto fronts. The overall mean values for each

method are in the last row. The results show that Product/

1-ALL presents the best overall mean value in the test

classification percentage with approximately two more

rules with respect to the original model considering mul-

tiple granularities. However, in Table 4, the application of

the Wilcoxon test on the test classification percentage of

the most accurate solutions shows that there is no statistical

difference between both the approaches, All Granularities

Table 1 Datasets considered for comparisons

Name Patterns Attributes Classes

Appendicitis 106 7 2

Australian 690 14 2

Bands 365 19 2

Bupa 345 6 2

Cleveland 297 13 5

Dermatology 358 34 6

Glass 214 9 6

Haberman 306 3 2

Hayes-roth 132 4 3

Heart 270 13 2

Hepatitis 80 19 2

Ionosphere 351 34 2

Iris 150 4 3

Mammographic 830 5 2

Newthyroid 215 5 3

Pasture 36 22 3

Pima 768 8 2

Saheart 462 9 2

Sonar 208 60 2

Tae 151 5 3

Vehicle 846 18 4

Wdbc 569 30 2

Wine 178 13 3

Wisconsin 683 9 2

Table 2 Results obtained by the studied methods (most accurate)

Datasets All Granularities Product/1-ALL

#R #C Tr. Ts. #R #C Tr. Ts.

Appendicitis 2.37 3.73 91.86 87.91 3.40 6.97 93.29 88.21

Australian 2.00 2.00 85.51 85.51 6.63 16.17 88.82 85.31

Bands 4.60 12.43 71.36 68.73 6.83 17.53 69.90 65.37

Bupa 6.73 16.73 69.50 63.99 12.80 31.27 78.06 67.11

Cleveland 20.17 56.13 73.11 55.11 28.67 77.77 76.72 52.83

Dermatology 11.40 19.33 99.07 94.12 13.53 23.47 99.51 93.26

Glass 12.63 32.37 78.65 60.48 19.30 44.73 83.97 69.96

Haberman 6.50 13.93 79.46 71.89 3.00 6.00 74.70 73.19

Hayes-roth 9.17 15.27 90.88 78.03 10.83 16.90 90.91 79.14

Heart 7.67 14.27 90.19 83.46 10.13 23.97 92.81 84.32

Hepatitis 3.80 9.30 96.10 90.44 4.33 9.40 98.20 87.00

Ionosphere 9.53 14.83 95.64 88.62 10.50 15.70 95.99 90.79

Iris 4.03 6.80 99.11 95.11 5.23 7.53 98.30 95.33

Mammogr. 6.97 14.70 83.07 81.04 11.67 25.27 83.30 79.35

Newthyroid 5.37 9.20 96.19 91.78 7.37 15.73 97.59 93.01

Pasture 3.70 5.87 98.05 75.83 4.43 8.13 100.00 73.61

Pima 6.63 14.33 77.80 74.92 10.63 25.87 79.04 73.79

Saheart 5.97 12.77 76.70 71.14 12.33 31.80 79.00 71.22

Sonar 6.73 10.50 86.54 78.88 6.87 12.60 87.82 77.48

Tae 7.77 18.93 66.55 54.57 11.33 25.43 65.98 59.24

Vehicle 13.77 35.77 69.34 62.81 15.60 43.10 70.80 66.20

Wdbc 5.67 9.83 97.12 94.90 7.27 12.40 97.26 93.96

Wine 3.90 8.23 100.00 96.08 6.37 12.10 99.92 95.11

Wisconsin 6.93 11.17 98.22 96.07 7.77 13.83 98.40 96.06

Mean 7.25 15.35 86.25 79.23 9.87 21.82 87.51 79.62

The bests in test are bold-faced

1 The corresponding data partitions (10-fcv) for these datasets are

available at the KEEL project webpage (Alcalá-Fdez et al. 2009):

http://sci2s.ugr.es/keel/datasets.php
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vs. Product/1-ALL. The null hypothesis associated with

Wilcoxon’s test is accepted (p� a), because the differences

between Rþ and R� are not significant. In any event, the

proposed approach presents at least the same classification

rates than the original one at the most accurate solution in

general, avoiding the use of multiple granularities without

any cost in the classification percentage.

A way to analyze the results in other parts of the Pareto

fronts is to compute the average Pareto fronts, composed

by the average values of the different solutions of each of

the thirty Pareto fronts (from the most accurate solution to

the simplest one). This method represents an extension

of the idea of analyzing the most accurate solutions in the

Pareto fronts (average of the most accurate, on the second

most accurate, etc.) presented in Alcalá et al. (2007b),

Gacto et al. (2009) where the search is focused on the most

accurate solutions only and extended in Alcalá et al.

(2009a) for some representative points. We consider the

next most accurate solution from each of the 30 fronts to

compute a new averaged solution, until no more solutions

remain in any of these fronts, obtaining a representation of

the average Pareto fronts.

In Table 3, we show the average results of the pro-

posed approach by considering the solution from the

average Pareto fronts which is closest in terms of the

number of rules (equivalent complexity) to the most

accurate average solution from All Granularities

approach. Even though it seems preferable to ensure a

single granularity than to obtain a simpler solution, with

approximately two rules of difference (between All

Granularities and Product/1-ALL), we can observe in this

table that very similar results are obtained when equiv-

alent complexities are considered. In fact, it still presents

the best overall mean values in test and Table 4 also

shows no statistical differences between both approaches

at the same complexity, All Granularities vs. Product/

1-ALL (same complexity). This demonstrates that by fixing

an appropriate single granularity at least equivalent results

can be obtained from the point of view of the accuracy and

the complexity. Further, it is highly preferable to avoid

multiple granularities in terms of the global interpretability

of the obtained models.

Figure 2 plots the average Pareto fronts on training and

test sets for Bupa dataset. As we can see in this example, by

determining single granularities the test data accuracy can

be improved even in most of the solutions obtained.

Additionally, as an example, three rule sets obtained by All

Granularities, Product/1-ALL (most accurate solution in

the Pareto front) and Product/1-ALL (with a similar com-

plexity in the same Pareto front) are depicted in Fig. 3.

These figures clearly show the same trend with the asso-

ciated average Pareto fronts. The main difference between

those obtained by Product/1-ALL and the one obtained

from All Granularities is that we could easily represent the

last two rule bases, b and c, in terms of the associated

linguistic labels (if an expert is able to provide them),

which is not possible with the first one, a.

Table 3 Results obtained by the studied method (equivalent

complexity)

Datasets Product/1-ALL (same complexity)

#R #C Tr. Ts.

Appendicitis 2.17 4.10 92.24 88.82

Australian 3.50 6.40 87.13 85.80

Bands 4.67 11.37 68.93 65.59

Bupa 6.47 14.67 74.35 67.93

Cleveland 20.20 53.40 74.14 53.48

Dermatology 11.70 20.10 98.90 93.08

Glass 12.57 28.10 80.15 69.90

Haberman 3.00 6.00 74.70 73.19

Hayes-roth 9.57 13.40 90.07 80.09

Heart 7.20 15.73 91.29 83.46

Hepatitis 2.77 5.63 95.71 90.20

Ionosphere 9.27 13.37 95.67 90.33

Iris 4.23 5.30 97.56 94.44

Mammogr. 6.40 12.33 82.43 79.67

Newthyroid 5.63 11.20 96.54 92.23

Pasture 3.93 6.40 96.90 73.89

Pima 6.87 16.00 78.36 73.78

Saheart 6.20 14.90 76.71 70.49

Sonar 6.87 12.60 87.82 77.48

Tae 7.67 15.10 64.73 57.04

Vehicle 13.77 37.70 70.80 66.08

Wdbc 5.43 9.27 96.80 93.79

Wine 3.93 5.30 96.17 90.99

Wisconsin 6.97 11.50 98.23 96.02

Mean 7.12 14.58 86.10 79.49

Improvements with respect to the corresponding most accurate

solution are bold-faced

Table 4 Wilcoxon’s test: All Granularities (Rþ) versus Product/1-

ALL (R�) on the test error at the most accurate solution and at the

same complexity

Comparison Rþ R� Hypothesis

(a ¼ 0:1)

p value

All Granularities versus

Product/1-ALL

144 156 Accepted 0.864

All Granularities versus

Product/1-ALL (same complexity)

150 150 Accepted 1.0
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5 On the combination of single granularity

specification with the rule selection and the lateral

tuning of membership functions: contexts learning

One of the most widely-used approaches to enhance the

performance of fuzzy rule-based systems is the one focused

on the definition of the membership functions, usually

named tuning of membership functions (Alcalá et al.

2007a; Gürocak 1999; Herrera et al. 1995; Karr 1991). The

tuning methods refine the parameters that identify the

membership functions associated to the global linguistic

labels. Classically, due to the wide use of the triangular-

shaped membership functions, the tuning methods refine

the three definition parameters that identify these kinds of

membership functions. The tuning techniques could pres-

ent a positive synergy with the multiobjective fuzzy rule

selection, considering the existing dependencies between

both parts, rules and membership functions, and repre-

senting a way to completely determine the model contexts

when granularities are properly specified.

To this end, we will combine the tuning of membership

functions with the multiobjective fuzzy rule selection

within the Product/1-ALL approach (by modifying the

evolutionary algorithm at step 4 of the said learning pro-

posal). As said, evolving both parts concurrently represents

a way to improve the accuracy of fuzzy rule-based classi-

fiers; on the other hand, the search space becomes extre-

mely complex to be handled by the state-of-the-art

algorithms. In order to reduce the search space, we will

exploit the linguistic 2-tuple representation (Alcalá et al.

2007a; Herrera and Martı́nez 2000), which represents a

way to decrement the tuning problem complexity easing

indeed the derivation of optimal models.

In the next subsection, we introduce the linguistic

2-tuple representation used for the lateral tuning of mem-

bership functions. Then, we stress the positive synergy

between rule selection and tuning techniques as a way to

enhance the capability of these methods to obtain more

accurate and compact fuzzy rule-based classifiers. Finally,

we propose the specific multiobjective evolutionary

Fig. 2 Average Pareto fronts (training and test) for Bupa dataset with

All Granularities and Product/1-ALL

(a)

(c) (b)

Fig. 3 Three rule set examples

in Bupa dataset. a by All

Granularities, b most accurate

by Product/1-ALL, c with a

similar complexity by Product/

1-ALL
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algorithm to perform together the rule selection and the

lateral tuning of membership functions.

5.1 Lateral tuning of membership functions

In Alcalá et al. (2007a), a new model of tuning of fuzzy

rule-based systems was proposed considering the linguistic

2-tuples representation scheme introduced in Herrera and

Martı́nez (2000), which allows the lateral displacement of

the support of a label and maintains the interpretability at a

good level. This proposal introduces a new model for rule

representation based on the concept of symbolic translation

(Herrera and Martı́nez 2000). The symbolic translation of a

label is a number in (-0.5, 0.5), expressing with this

interval, the domain of a label when it is moving between

its two adjacent lateral labels (see Fig. 4a). Let us consider

a generic linguistic fuzzy partition L ¼ fl1; . . .; lLBg (with

LB representing the number of labels). Formally, we rep-

resent the symbolic translation of a label li in L by means of

the 2-tuple notation,

ðli; aiÞ; li 2 L; ai 2 ½�0:5; 0:5Þ:

The symbolic translation of a label involves the lateral dis-

placement of its associated membership function. Figure 4

shows the symbolic translation of a label represented by the

2-tuple ðl2;�0:3Þ together with the associated lateral dis-

placement of the corresponding membership function. Both

the linguistic 2-tuples representation model and the elements

needed for linguistic information comparison and aggrega-

tion were presented and applied to the Decision Making

framework in Herrera and Martı́nez (2000).

In the context of fuzzy rule-based systems, the linguistic

2-tuples could be used to represent the membership func-

tions comprising the linguistic rules. This way to work

introduces a new model for rule representation that allows

the tuning of the membership functions by learning their

respective lateral displacements. The main achievement is

that, since the three parameters usually considered per label

(Babuška et al. 2002; Bonissone et al. 1996; Cordón et al.

2001; Cordón and Herrera 1997; Herrera et al. 1995; Jang

1993; Karr 1991; Zheng 1992) are reduced to only one

symbolic translation parameter, this proposal decreases the

learning problem complexity easing indeed the derivation

of optimal models.

Notice that from the parameter a applied to each label,

we could obtain the equivalent triangular membership

functions. Thus, a fuzzy rule-based system based on lin-

guistic 2-tuples can be represented as a classic Mamdani

fuzzy rule-based system (Mamdani 1974; Mamdani and

Assilian 1975). In this way, from the viewpoint of

interpretability:

• the original shapes of the membership functions are

maintained (in our case triangular and symmetrical) by

laterally changing the location of their supports, and

• the lateral variation of the membership functions is

restricted to a short interval, ensuring overlapping

among adjacent labels to some degree but preventing

their vertex points from crossing.

Finally, in order to avoid very specific parameters and to

preserve, as much as possible, the original meanings of the

membership functions, we propose the use of a short dis-

placement interval. From different experiments with

intervals (-0.5, 0.5), [-0.25, 0.25) and [-0.1, 0.1), we

could observe that using values in [-0.1, 0.1) enabled

obtaining the same or even better results in order to com-

bine the lateral tuning with the Product/1-ALL approach. In

this way, since it also represents a higher interpretability

level, we will represent the translation of a linguistic label

li as,

ðli; aiÞ; li 2 L; ai 2 ½�0:1; 0:1Þ:

5.2 Positive synergy between rule selection

and the lateral tuning of membership functions

There are several reasons explaining the positive synergy

between the rule selection and the lateral tuning of mem-

bership functions. Some of them are:

• Sometimes, redundant rules cannot be removed by only

using a rule selection method, since these kinds of rules

(a) (b)

Fig. 4 Symbolic translation of a label and lateral displacement of the associated membership function
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could reinforce the action of poor rules improving the

model accuracy. The tuning of membership functions

can change the performance of these rules making the

reinforcement action unnecessary, and therefore, help-

ing the rule selection technique to remove redundant

rules.

• The tuning process is affected when too much rules are

included in the initial rule set. When the rule base of a

model being tuned contains unnecessary rules, the

tuning process also tries to improve these kinds of rules,

adapting them and the remaining ones to get a good

global performance. This way of working imposes strict

restrictions, reducing the process ability to obtain

precise linguistic models.

• This problem grows as the problem complexity grows

(i.e., problems with a large number of variables and/or

rules), and when the rule generation method does not

ensure the generation of rules with the perfect coop-

eration, but a large set or candidate rules. In these cases,

the tuning process is very complicated because the

search ability is dedicated to reduce the bad cooperation

of some rules instead of improving the performance of

the remaining ones. In these cases, rule selection could

help the tuning mechanism by removing the rules that

really degrade the accuracy of the model.

Therefore, combining rule selection and tuning approa-

ches could result in important improvements in the system

accuracy, maintaining the interpretability at an acceptable

level (Alcalá et al. 2006, 2007a; Gacto et al. 2009).

However, in some cases, when both techniques are com-

bined, the search space considered is too large, which could

provoke the derivation of sub-optimal models (Alcalá et al.

2006).

In this context, the use of the 2-tuple representation can

help to reduce the search space by allowing proper conver-

gence to better global solutions that take the existing depen-

dencies between rules and membership function parameters

into account. In this section, we propose the selection of a

small subset of cooperative rules from a candidate fuzzy rule

set together with the learning of the symbolic translation

parameters. This pursues the following aims:

• To improve the linguistic model accuracy selecting

the set of rules best cooperating, while lateral tuning

is performed to improve the location of the mem-

bership functions. Notice that it is perfectly compat-

ible with the use of the certainty grades since, as

explained in Section 2, using rule weights just affects

the strength of each fuzzy if–then rule in the

classification phase which does not change the

position of the antecedent fuzzy sets. Therefore, they

can be seen as complementary approaches in terms of

accuracy improvement.

• To obtain simpler, and thus easily understandable,

linguistic models by better removing unnecessary rules.

• To preserve the interpretability of the linguistic models

since the 2-tuple representation approach does not

modify the original shape of membership functions, and

the lateral displacements are restricted to a short

interval. Further, linguistic 2-tuples could be inter-

preted as a change in the linguistic meaning of the

labels as indicated in Alcalá et al. (2007a).

• To favor the combined action of the tuning and selection

strategies (which involves a larger search space) by

considering the simpler search space of the lateral tuning

(Alcalá et al. 2007a) (only one parameter per label).

5.3 Multiobjective evolutionary algorithm to jointly

perform rule selection and lateral tuning (Step 4)

To select the subset of rules which cooperate best and to

obtain the lateral translation parameters, we consider a

multiobjective genetic algorithm which codes all of them

(rules and parameters) in one chromosome. This method is

based on the algorithm proposed in Sect. 3.3, again con-

sidering the genetic model of NSGA-II (Deb et al. 2002).

To this end, we must take into account the existence of

binary genes (rule selection) and real values (lateral dis-

placements) within the same chromosome. Therefore, the

algorithm proposed in Sect. 3.3 is extended in order to

consider a double coding scheme and to apply the appro-

priate genetic operators for each chromosome part. The

following changes are considered in order to integrate the

lateral tuning process within the said multiobjective genetic

fuzzy rule selection algorithm:

• Coding Scheme A double coding scheme for both rule

selection and lateral tuning is considered:

C ¼ Sþ T:

In this case, the previous approach (part S) is combined

with the lateral tuning by allowing an additional real

vector T that represents the joining of the parameters of

the fuzzy partitions. Let us consider the following

number of labels per variable: ðm1;m2; . . .;mnÞ; with

n being the number of variables. Then, the real-coded

vector T has the following form (where each gene is

associated to the lateral displacement of the

corresponding label),

T ¼ ða1
1; . . .; a1

m1 ; . . .; an
1; . . .; an

mnÞ:

• Initial gene pool The initial pool is obtained with

individuals generated at random in f0; 1g and (-0.1,

0.1), respectively.

• Crossover The uniform crossover presented in subsec-

tion 3.3 for the S part combined with the BLX-0.5
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(Eshelman and Schaffer 1993) crossover for the T part.

The BLX-0.5 operator is applied twice considering T1

and T2 in order to obtain the T parts of both offsprings.

Let us assume that T1 ¼ ðx1; . . .; xgÞ and T2 ¼
ðy1; . . .; ygÞ; ðxi; yi 2 ½ai; biÞ ¼ ½�0:1; 0:1Þ � <; i ¼
1; . . .; gÞ; are the two real-coded chromosomes that

are going to be crossed. Using the BLX-0.5 crossover,

one descendant Z ¼ ðz1; . . .; zgÞ is obtained, where zi is

randomly (uniformly) generated within the interval

½li; ui�; with li ¼ maxfai; cmin � Ig; ui ¼ minfbi; cmax þ
Ig; cmin ¼ minfxi; yig; cmax ¼ maxfxi; yig and I ¼
ðcmax � cminÞ � 0:5 (this 0.5 coming from BLX-0.5).

Finally, two descendants are generated by joining the

two from the S part with the two from the T part, one by

one randomly.

• Mutation The bit-flip biased mutation (see Sect. 3.3)

for the binary part and a random mutation in one gene

of the real part.

The rest of the components of the algorithm remains

unchanged.

6 Experiments on the combination with the lateral

tuning

In order to analyze the performance of the tuning of

membership functions, when it is applied together with the

single granularity specification or even together with the

original approach using multiple granularities, we compare

all the possible combinations among them. They are the

original approach without and with tuning (namely All

Granularities and All Gr.-TUN), and the mechanism pro-

posed to specify single granularities without and with

tuning (namely Product/1-ALL and Product/1-ALL-TUN).

For this study, we will follow the same experimental

framework presented in Sect. 4. The parameter settings for

all these approaches are as follows (same conditions again

in all the cases):

• The number of fuzzy rules for each class: 300

• Optimizer: NSGA-II

• Population size: 200

• The number of generations: 5,000

• Crossover probability: 0.9 (uniform crossover for the

rule coding, combined with BLX-0.5 for the member-

ship function parameter coding when tuning is

performed).

• Mutation probability: 0.05 (from 1 to 0 for the rule

coding, 1=Lth (from 0 to 1, where Lth is the string

length), combined with randomly changing a value for

the membership function parameter coding when

tuning is performed.

The results obtained by the different methods are shown

in Table 5 (we include again the results from All Granu-

larities and Product/1-ALL in order to ease the comparative

analysis). In this case, the approach with the best overall

mean results is Product/1-ALL-TUN, presenting more or

less the same number of rules than the original/classic

approach (therefore, decreasing the complexity with

respect to the single granularity-based algorithm without

tuning). In order to assess whether we can conclude that

completely specifying the model contexts, i.e. using

Product/1-ALL-TUN, statistically outperforms the

remaining approaches in terms of test classification per-

centage, we apply Wilcoxon’s test to the results achieved

by this approach and the remaining algorithms in the most

accurate solutions. Table 6 shows these results. The null

hypothesis associated with the Wilcoxon’s test is now

rejected ðp\aÞ in all the cases in favor of Product/1-ALL-

TUN due to the differences between Rþ and R�: Thus, we

can conclude that performing tuning on the prespecified

granularities represents a way to obtain better classifiers

with at least the same complexity than the previous

approaches.

With respect to the tuning on the multiple granularity-

based approach, we can observe that taking into account

the results in Table 6, Product/1-ALL-TUN also outper-

forms this approach statistically. In fact, it presents almost

the same overal mean on the test classification percentage

than its respective counterpart, and it is even worse than

Product/1-ALL, obtaining probably too simple models.

Table 7 shows the results of the Wilcoxon’s test on the test

values for this method and both approaches without tuning.

The null hypothesis is now accepted for both methods,

showing that the tuning is not useful on the approach based

on multiple granularities. Therefore, it seems that the

tuning is still able to provide some kind of improvement in

the single granularity model but not too much improve-

ment, when the data is more or less well covered by using

multiple granularities.

If we closely look at experimental results on each

dataset by the four methods, we can observe the following

general facts on the application of the tuning:

• Whereas the differences in the classification accuracy

among the four methods are not so large on many data

sets, they are large on some data sets.

• Whereas the tuning improved the classification accu-

racy on many data sets, it deteriorated not only the test

data accuracy (probably due to the overfitting) but also

the training data accuracy (due to the complexity

increasing) on some data sets.

Figures 5 and 6 plot the average Pareto fronts on training

and test sets at Pima and Sonar datasets on the four methods.
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As we can see, the complexities are significantly decreased

giving way to Pareto fronts with similar lengths to those

obtained by the original approach. In the first case, Pima, we

can observe that both approaches improve the test classifi-

cation percentages when the tuning is applied, making the

single granularity-based approach to overtake the multiple

granularities-based one. In the second case, Sonar, we can

observe that the tuning overfits when it is applied on All

Granularities, whereas the test still improves when it is

applied on the single granularities-based approach.

Additionally, two rule sets obtained by both approaches

with tuning (most accurate solutions) are depicted in

Table 5 Results obtained by the studied methods (most accurate)

Datasets All Granularities Product/1-ALL All Gr.-TUN Product/1-ALL-TUN

#R #C Tr. Ts. #R #C Tr. Ts. #R #C Tr. Ts. #R #C Tr. Ts.

Appendicitis 2.37 3.73 91.86 87.91 3.40 6.97 93.29 88.21 2.27 3.43 91.79 87.00 3.13 6.33 93.47 87.30

Australian 2.00 2.00 85.51 85.51 6.63 16.17 88.82 85.31 2.23 5.47 86.73 85.60 5.13 12.17 89.18 85.65

Bands 4.60 12.43 71.36 68.73 6.83 17.53 69.90 65.37 4.73 12.87 72.68 68.82 6.63 15.70 71.18 65.80

Bupa 6.73 16.73 69.50 63.99 12.80 31.27 78.06 67.11 4.93 12.23 70.53 63.20 9.60 21.97 78.59 67.19

Cleveland 20.17 56.13 73.11 55.11 28.67 77.77 76.72 52.83 17.70 49.03 74.62 54.53 19.43 52.53 77.21 58.80

Dermatology 11.40 19.33 99.07 94.12 13.53 23.47 99.51 93.26 9.13 14.93 99.10 95.23 10.63 17.43 99.28 94.48

Glass 12.63 32.37 78.65 60.48 19.30 44.73 83.97 69.96 10.53 25.73 78.75 64.31 15.37 34.80 83.68 71.28

Haberman 6.50 13.93 79.46 71.89 3.00 6.00 74.70 73.19 5.50 12.30 79.82 71.02 3.37 6.27 76.82 71.88

Hayes-roth 9.17 15.27 90.88 78.03 10.83 16.90 90.91 79.14 8.20 12.83 90.49 77.48 9.97 15.90 90.99 78.88

Heart 7.67 14.27 90.19 83.46 10.13 23.97 92.81 84.32 6.50 11.90 90.01 82.96 8.77 18.77 91.87 82.84

Hepatitis 3.80 9.30 96.10 90.44 4.33 9.40 98.20 87.00 3.10 7.70 96.71 90.38 2.97 6.83 97.88 88.53

Ionosphere 9.53 14.83 95.64 88.62 10.50 15.70 95.99 90.79 6.70 9.97 95.47 88.63 8.13 10.67 96.25 90.79

Iris 4.03 6.80 99.11 95.11 5.23 7.53 98.30 95.33 4.10 6.90 99.43 94.00 4.03 4.60 98.30 97.33

Mammographic 6.97 14.70 83.07 81.04 11.67 25.27 83.30 79.35 5.37 10.30 82.96 81.05 7.13 14.97 83.90 80.49

Newthyroid 5.37 9.20 96.19 91.78 7.37 15.73 97.59 93.01 4.67 8.33 97.79 94.12 5.43 10.40 98.02 94.60

Pasture 3.70 5.87 98.05 75.83 4.43 8.13 100.00 73.61 3.47 5.13 99.39 78.33 3.90 6.47 99.27 80.56

Pima 6.63 14.33 77.80 74.92 10.63 25.87 79.04 73.79 5.70 12.83 78.51 75.97 5.20 11.00 79.06 77.05

Saheart 5.97 12.77 76.70 71.14 12.33 31.80 79.00 71.22 4.60 9.57 76.93 70.70 6.80 16.30 77.73 70.13

Sonar 6.73 10.50 86.54 78.88 6.87 12.60 87.82 77.48 5.10 7.40 87.04 73.77 5.27 9.03 87.91 78.90

Tae 7.77 18.93 66.55 54.57 11.33 25.43 65.98 59.24 7.47 17.50 69.78 55.69 9.77 22.10 71.21 60.78

Vehicle 13.77 35.77 69.34 62.81 15.60 43.10 70.80 66.20 10.77 26.87 69.44 63.91 11.93 32.03 71.11 66.16

Wdbc 5.67 9.83 97.12 94.90 7.27 12.40 97.26 93.96 4.87 7.67 97.30 95.49 5.13 8.63 97.33 94.90

Wine 3.90 8.23 100.00 96.08 6.37 12.10 99.92 95.11 3.90 7.13 100.00 94.14 5.80 10.17 99.92 93.03

Wisconsin 6.93 11.17 98.22 96.07 7.77 13.83 98.40 96.06 5.57 9.00 98.19 95.82 6.30 10.97 98.33 96.35

Mean 7.25 15.35 86.25 79.23 9.87 21.82 87.51 79.62 6.13 12.79 86.81 79.26 7.49 15.67 87.85 80.57

The bests in test are bold-faced

Table 6 Wilcoxon’s test:

Approaches without tuning or

tuning on All Granularities (Rþ)

versus Product/1-ALL-TUN

(R�) on the test error at the most

accurate solution

Comparison Rþ R� Hypothesis ða ¼ 0:1Þ p value

All Granularities versus Product/1-ALL-TUN 85 215 Rejected 0.063

Product/1-ALL versus Product/1-ALL-TUN 74 226 Rejected 0.030

All Gr.-TUN versus Product/1-ALL-TUN 76 224 Rejected 0.034

Table 7 Wilcoxon’s test:

Approaches without tuning (Rþ)

versus All Gr.-TUN (R�) on the

test error at the most accurate

solution

Comparison Rþ R� Hypothesis ða ¼ 0:1Þ p value

All Granularities versus All Gr.-TUN 143 157 Accepted 0.841

Product/1-ALL versus All Gr.-TUN 172 128 Accepted 0.530
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Figs. 7 and 8, respectively, at Pima and Sonar. Thanks to

the fact that no strong changes are required on the mem-

bership functions to reach the highest level of accuracy, we

can observe that in all the cases the membership functions

are very close to the original ones. In this way, we can

consider that the interpretability is highly preserved.

Therefore, the main differences are again that we could

easily represent the rule bases obtained from Product/

1-ALL-TUN in terms of the associated linguistic labels (if

an expert is able to provide them), which is not possible

with the All Granularities-based approach.

7 Concluding remarks

In this work, we have analyzed and extended a method to

generate single granularity-based fuzzy classification rules

for multiobjective genetic fuzzy rule selection. After

extracting a prespecified number of fuzzy rules with mul-

tiple granularities, a single granularity is specified for each

attribute individually according to the frequency of

employed partitions and the importance of the multiple

granularity-based extracted rules. Then, multiobjective

genetic fuzzy rule selection is applied in order to obtain a

(a) (b)

Fig. 6 Average Pareto fronts

(training and test) on Sonar

dataset from All Granularities

and Product/1-ALL without and

with tuning

(a) (b)

Fig. 5 Average Pareto fronts

(training and test) on Pima

dataset from All Granularities

and Product/1-ALL without and

with tuning

(a) (b)

x1

R1

Class

1 (0.01)

x2 x3 x4 x7x6

R2 1 (0.60)

R3 2 (0.24)

R4 2 (0.33)

R5 2 (0.14)

R6 2 (0.04)

x8Fig. 7 Two tuned rule sets with

multiple (a) and with single

(b) granularity for Pima dataset
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set of non-dominated solutions with a good tradeoff

between complexity and accuracy. Additionally, it has

been combined with the lateral tuning of membership

functions as a way to analyze the importance of contexts

learning in the derivation of linguistic fuzzy rule-based

classification systems.

The different approaches have been statistically com-

pared on a set of 24 well-known datasets. As well as the

interpretability improvement that the use of a fixed single

granularity involves, the results show that the performance

of the obtained classifiers can be maintained with respect to

the use of multiple granularities. On the other hand, we can

conclude that combining single granularity specification

and a slight tuning of the membership functions gives way

to more accurate models with similar complexities to the

original/classic approach based on multiple granularities.

By contrast, the tuning is not effective when it is combined

with the use of multiple granularities, which is only

showing slight improvements on the complexities.

Taking into account the results obtained, we can high-

light the following general tendencies:

• With respect to the complexity (in terms of the number

of fuzzy rules and the total rule length), all complexity-

based approaches are able to obtain lower complexities

but similar in the best cases. Further, the application of

a tuning clearly helps to decrement the complexity with

respect to the corresponding counterparts.

• With respect to the classification accuracy, the differ-

ences in the classification accuracy among the four

methods are not so large on many data sets if compared

with differences in the complexity.

Finally, to sum-up, we can conclude that the tuning is

highly promising on single granularities but not on multiple

granularities. This demonstrates the importance of com-

pletely determining appropriate contexts, i.e., appropriate

granularities and membership function parameters.
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Appendix: Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a pair-wise test that aims

to detect significant differences between two sample

means: it is the analogous to the paired t test in non-

parametric statistical procedures. If these means refer to the

outputs of two algorithms, then the test practically assesses

the reciprocal behavior of the two algorithms (Sheskin

2003; Wilcoxon 1945). Let di be the difference between the

performance scores of the two algorithms on the ith out of

Nds datasets. The differences are ranked according to their

absolute values; average ranks are assigned in case of ties.

Let Rþ be the sum of ranks for the datasets on which the

first algorithm outperformed the second, and R� the sum of

ranks for the contrary outcome. Ranks of di ¼ 0 are split

evenly among the sums; if there is an odd number of them,

one is ignored:

Rþ ¼
X

di [ 0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ;

R� ¼
X

di\0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ:

Let T be the smaller of the sums, T ¼ minðRþ;R�Þ: If

T is less than, or equal to, the value of the distribution of

Wilcoxon for Nds degrees of freedom [Table B.12 in Zar

(1999)], the null hypothesis of equality of means is

rejected.

The Wilcoxon signed-rank test is more sensible than the

t test. It assumes commensurability of differences, but only

qualitatively: greater differences still count for more,

which is probably desired, but the absolute magnitudes are

ignored. From the statistical point of view, the test is safer

since it does not assume normal distributions. Also, the

outliers (exceptionally good/bad performances on a few

datasets) have less effect on the Wilcoxon test than on the t

test. The Wilcoxon test assumes continuous differences di;

therefore, they should not be rounded to one or two deci-

mals, since this would decrease the test power due to a high

number of ties.

(a)

(b)

Fig. 8 Two tuned rule sets with multiple (a) and with single

(b) granularity for Sonar dataset
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When the assumptions of the paired t test are met, the

Wilcoxon signed-rank test is less powerful than the paired t

test. On the other hand, when the assumptions are violated,

the Wilcoxon test can be even more powerful than the t

test. This allows us to apply it to the means obtained by the

algorithms in each dataset, without any assumption about

the distribution of the obtained results.
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